The Role of Agriculture in Rural Well-Being: The Case of Israel

AYAL KIMHI*

Jel classification: R11

1. Introduction

This paper investigates the impact of the importance of agriculture in rural communities in Israel on the well-being of the local population. As agriculture loses its importance as a source of income throughout the developed world. the rural population gradually shifts to alternative income sources (Freshwater, 2000). There is extensive literature that investigates this trend, which has been found in many different parts of the world (Alasia et al., 2009; Caplin et al., 2004; Meert et al., 2005: Mishra et al., 2010). At the micro level, there is clear evidence that the de-

cline in farm activity and the rise in farm income diversification through off-farm income-generating activities go hand in hand (Ahituv and Kimhi, 2006; Goodwin et al., 2007; Kimhi and Rekah, 2007; van Leeuwen, et al., 2008). The question is whether the relative importance of agriculture in the rural economy has a positive or negative impact on the standard of living. On one hand, it could be that communities with a relatively large share of agriculture are those with a comparative advantage in agriculture, so that farming is still profitable enough even at times of declining overall terms of trade in agriculture. On the other hand, perhaps the relatively large share of agriculture indicates lack of alternative income sources rather than lower incentives to engage in other income-generating activities. On top of these arguments, given the flow of urban families who join rural communities in order to improve their quality of life (Rothwell et al., 2002; Mitchell, 2004), the importance of

Abstract

Are households in rural communities that rely more heavily on agriculture able to achieve standards of living comparable to other rural households? This paper answers this question in the context of Israeli Moshav villages. We find that the relative importance of agriculture affects rural income negatively, so that households in communities that rely more heavily on agriculture are worse off. Provided that the global decline of agriculture will continue, the challenge of policy makers is to create alternative employment opportunities in rural areas that will smooth the occupational migration out of farming and prevent rural poverty.

Key words: Rural well-being; Agriculture; Per-capita income.

Résumé

Les ménages dans les communautés rurales qui dépendent plus exclusivement des activités agricoles sont-ils capables d'atteindre des conditions de vie comparables à celles des autres ménages ruraux? Le but de ce travail est d'apporter des éléments de réponse à cette question en considérant le cas des mochavim, les villages coopératifs israéliens. Nous avons constaté que l'importance relative de l'agriculture influe négativement sur la revenue rurale et de ce fait, les ménages dans les communautés qui dépendent davantage des activités agricoles sont les plus démunis. Vu le déclin inexorable de l'agriculture à l'échelle mondiale, le défi que doivent relever les décideurs est la création d'emplois alternatifs dans les zones rurales pour atténuer la déprise agricole et prévenir la pauvreté rurale.

Mots-clés: bien-être rural; agriculture; revenu par tête.

In Israel, the deterioration of agricultural incomes in the last two decades has been perhaps more extreme than in other countries, as a result of a sharp decline in government support and protection (Kislev and Vaksin, 2003). Although there are specific regions in which agriculture is still prosperous, such as the Arava valley in the south, our hypothesis is that on average, the population is worse off in localities that rely more heavily on agriculture. The main ob-

jective of this paper is to test this hypothesis.

We use data on rural semi-cooperative (Moshav) villages obtained from four sources. The two major sources are the 1983 and 1995 Censuses of Population in Israel, which provide welfare indicators and other properties of households and individuals. The population censuses were conducted at the household level, but the data we obtained are the variable means for each village. The main welfare indicator is income per capita, but we also examine two alternative indicators, housing density (number of people per room) and the number of automobiles owned by the household. The two secondary data sources are the 1981 Census of Agriculture that was conducted at the household level and the 1995 file of the Annual Census of Agriculture that is con-

agriculture could be conceived as a positive amenity by some families and as a negative amenity by other families.

This question has relevant policy implications. Given the multifunctional nature of agriculture, that is already recognized by governments, international organizations and scientific institutions alike (Renting et al., 2009; Randall, 2010), there is more scope for public support to active farmers if indeed the standard of living in rural areas negatively correlated with the role of agriculture in these areas.

^{*} Department of Agricultural Economics and Management and The Center for Agricultural Economic Research The Hebrew University of Jerusalem, Rehovot , Israel.

ducted at the village level and provides information on the levels of agricultural activities¹. We use this information to construct an index of the importance of agriculture in each village, which constitutes the key explanatory variable in this research.

The results are somewhat mixed. While the importance of agriculture has a statistically significant negative effect on per capita income, its effects on the other welfare indicators are not significant. Still, there is no case in which we find a positive effect of agriculture on well-being. This confirms our initial hypothesis, but also indicates the need for further research.

In section 2 we provide some historical background on the evolution of the agricultural sector in Israel. In section 3 we describe the data and present descriptive statistics, and section 4 includes the empirical results. Section 5 discusses the conclusions and suggests several avenues for future research.

2. Israeli Agriculture in Perspective

Agriculture was one of the most important foundations on which the state of Israel was established. Since the end of the 19th century, Jewish settlers in Israel saw agriculture as a channel through which the link between the Jewish people and their ancient homeland can be re-established. Cooperation has been the key to the success of settlement and agricultural production. The two dominating types of cooperative settlements have been the Kibbutz and the Moshav (Kisley, 1992). The Kibbutz was a commune in which each member produced according to his ability and consumed according to his needs. The Moshav was a semicooperative village made of individual family farms, in which certain activities such as purchasing, marketing, and financing were handled jointly in order to exploit economies of scale in these activities (Haruvi and Kislev, 1984; Schwartz, 1999; Sofer, 2001). A third type of cooperative settlement, Moshav Shitufi, was a compromise between Kibbutz and Moshav: production was handled collectively while consumption was handled individually. Ideologically, all three types of cooperative settlements explicitly highlighted farming as a way of life and not only as a way of making a living.

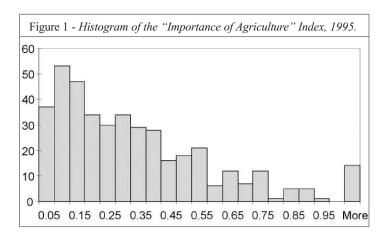
Economically, agriculture constituted a major fraction of national income and exports in particular for many years. Socially, the cooperative agricultural sector provided a generation of political, cultural and military leaders. After Israel declared its independence and masses of immigrants started pouring in, food security became one of the top priorities of the government. Many Moshav villages were established in the early 1950s, populated by immigrants, mostly in remote areas. The new settlers were provided with infrastructure and professional guidance in order to allow them to make a living off agriculture. Agricultural research was also promoted and financed by the government, and the resulting technological progress was remarkable.

In the 1970s, terms of trade of agriculture were already worsening, but the prosperity of agriculture continued thanks to the opening of export markets for fruits, vegetables and flowers. However, the inevitable decline of farming, experienced by virtually all countries during the development process, was around the corner. The reliance on exports made farmers more vulnerable to world price fluctuations and macroeconomic conditions. The unstable economic environment brought about by the high inflation in the late 1970s and early 1980s made farm income even more uncertain. The large debt due to the capital investments could not be serviced adequately (Kisley, 1993). The development of non-agricultural production and service industries provided an alternative source of income, especially for the high-ability farmers. Out-migration from agriculture accelerated through two complementary channels. The first channel was by farmers selling their farms to urban families seeking rural-style residence (Kimhi and Bollman, 1999). The second channel was by continuing farmers seeking to supplement their income by engaging in non-agricultural activities (Sofer, 2001; Kimhi, 2000). These included on-farm small businesses as well as off-farm businesses and jobs, located in part in the surrounding rural area and in part in nearby urban centers².

The farm debt crisis that followed the economy-wide 1985 stabilization plan was a major accelerator of this process. Many farms became practically delinquent due to the high real interest rates and could not serve as a source of income anymore. Many cooperatives collapsed, leaving their members without the safety net and support system to which they were used for decades (Kislev, Lerman and Zusman, 1991; Schwartz, 1999). Farmers were increasingly shifting to alternative income-generating activities, and while some of the more productive farms were able to acquire more farm resources and expand production, increasing fractions of land and other farm inputs were left unused³.

In the early 1990s, another structural change took place. With the mass migration of people from the former Soviet Union and the resulting shortage of housing, the government allowed farm communities to convert part of their agricultural land to non-agricultural uses, including both industrial parks and residential neighborhoods. This has also been viewed as a way to help farm families overcome the debt crisis. This policy provided farmers with more opportunities to develop non-agricultural businesses, and in

¹ The 1995 household-level Survey of Agriculture covered only 10% of farm households and hence was not satisfactory for our purposes.


² One should bear in mind that the concept of rural in a small country such as Israel is relative. Most rural residents live within a couple of hours drive from a major urban center.

³ Legally farmers were not allowed to trade land and water quotas. This regulation was more or less self-enforced by the cooperatives, but after their collapse, and given the financial hardships of farmers, it became common to lease land and water, mostly on a short-term basis.

addition allowed the communities to expand with the addition of many non-farm families that in some cases outnumbered the farm families. Both outcomes contributed to the accelerated decline in the importance of agriculture as a source of income in rural Israel⁴. Today, in most Moshav villages only a handful of families are living off agriculture.

3. Data and Descriptive Statistics

The major source of data for this research is the Census of Population in Israel. We were not able to obtain observations on individuals or households in which the village is identified, hence we only use village means of household and individual characteristics. The main welfare indicator we use as a dependent variable is income per capita. For 1995, we have both labor income and total income (including transfers), but we chose to work with labor income because there are many more missing values in total income. For 1983 we only have wage labor income⁵. We recognize that income is not the only possible measure of welfare. Other indicators of material well-being may be informative as well. Our data set includes two such indicators, housing density (average number of people per room) and the number of automobiles owned by the household. Housing density is reported by means of two variables for each village in the sample: "low density" is the fraction of households with less than one person per room on average, and "intermediate density" is the fraction of households with 1-2 persons per room, on average. We use low density as an indicator of material well-being. The number of automobiles owned by households is also reported by means of two variables: "one car or

more", which is the fraction of households that own at least one car, and "two cars or more", the fraction of households that own more than one car. Here we choose two cars or more as an indicator of material well-being. While these choices are indeed arbitrary, we verified that their effect on the results is not qualitatively important⁶.

We focus on Moshav villages in this paper, because our secondary sources of data, which will be explained below, provide reliable information only on these communities⁷. Moshav villages were home for about a third of the rural population in Israel in 1983, and slightly less than that in 1995 (see figure 1 in Kimhi, 2004).

Table 1 compares the three measures of economic wellbeing in the two census years. We observe a sharp decline in income but an improvement in housing density and car ownership. Table 2 presents the bivariate correlation coef-

	1983	1995
Income per capita (1995 NIS per month)	3,108	1,692
Housing density		
2+ people per room (high density)	0.146	0.067
1-2 people per room (intermediate density)	0.361	0.449
0-1 people per room (low density)	0.493	0.484
Car ownership		
No cars	0.377	0.260
One car per household	0.519	0.478
More than one car per household	0.104	0.262

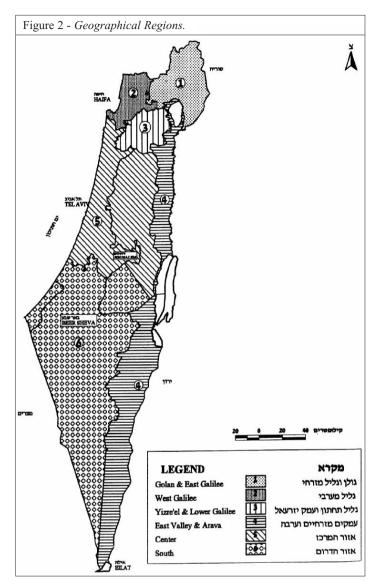
Table 2. Correlations of well-Being Measures.

	1983	1995
Income and Housing Density	0.123**	0.269**
Income and Car Ownership	0.164**	0.578**
Housing Density and Car Ownership	0.402**	0.335
	* .	

^{**} Correlation coefficient significant at 1%.

⁴ Another outcome of the housing shortage was a boom in real estate prices. This allowed and still allows farmers in the central part of the country to sell off their farm to wealthy urban families who seek a rural residence and do not have any interest in farming.

⁵ To make sure we don't miss anything important, we repeated the empirical analysis with total income. The results were qualitatively similar.


⁶ The census was administered using two different questionnaires. The "short" questionnaire, which included basic demographic and household characteristics, was filled out by all households. The "long" questionnaire, which included more detailed work and income questions, was filled out by 20% of the households, chosen randomly. The housing density and car ownership variables are from the short questionnaire, while income is from the long questionnaire. We inflated the income variable by the inverse of the fraction of workers who reported their income, assuming implicitly that those who did not report their income are a random sample of workers.

⁷ The Central Bureau of Statistics (CBS) used different means of collecting data in different types of communities. Household surveys do not include households living in a Kibbutz or in a Moshav Shitufi because, by definition, households are not associated directly with agricultural production in these communities. Farm surveys do not include private farmers in non-cooperative communities because they are relatively few, not organized, and quite diverse. Farm households in Moshav villages are therefore the only sub-sector that has good agricultural as well as household data. Data for the other sectors are imputed by the CBS in ways that make them inadequate for micro-level empirical analyses.

ficients of the three measures of well-being. We find that all the correlation coefficients are positive. The correlations of income per capita with housing density and car ownership are larger in 1995 than in 1983, while the correlation between housing density and car ownership declines between 1983 and 1995 and becomes insignificant.

The key explanatory variable in this research is a measure of the importance of agriculture in each village. For this we use data from secondary sources. For 1983 we use data from the 1981 Census of Agriculture, which is conducted at the household level, and for 1995 we use the Annual Census of Agriculture, which is conducted at the locality level. Both data sets provide information on the levels of agricultural activities. From this information we construct the aggregate value added (value of production minus purchased inputs) of the agricultural activities in each locality, by multiplying the size of each branch by a coefficient of value added per unit that was provided by the Central Bureau of Statistics, and summing up. The 1981 values are converted to 1983 prices by using an implicit price index of the value added in agriculture⁸.

For our measure of the importance of agriculture, we divide value added by the total income of all households in each locality, and obtain an index which should theoretically be between zero and one. As figure 1 reveals, there are a number of Moshav villages in which the "agricultural importance" index is above one. This is due first to the fact that value added is not identical to income by definition, and second to the fact that we use two very different sour-

ces of data. Still, this is the best available indicator of the importance of agriculture. Note that matching the 1981 value added data with the 1983 population census data required identification of the villages, and we were able to do that for only 120 of the 406 Moshav villages⁹.

Other explanatory variables include demographic, economic, geographic and institutional characteristics of the localities. Demographic characteristics include village population, mean household size, median age of the population, and dependency ratio (one minus the fraction of people from 20 to 64 years of age). We also include the fraction of people from 26 to 50 years of age with 9-12 years of schooling, with more than 12 years of schooling, and with an academic degree 11. Economic characteristics include the labor force participation rate, the fraction of people employed in prestigious (academic and managerial) occupations, and the fraction of households headed by a hired employee. Geographic characteristics are represented by a set of regional dummies, according to the regions defined by the Ministry of Agriculture (figure 2). Since these regions are

⁸ Value added is clearly measured with error. Using a country-wide set of value-added coefficients is likely to overstate value added in high-cost areas and understate it in low-cost areas. This could cause a bias in the estimated coefficients if the measurement error is correlated with non-farm income. If low-cost areas also offer better nonfarm income opportunities, the coefficients of the importance of agriculture could be biased upwards. It is difficult to tell a-priori whether this is the case or not, because some crops enjoy better conditions in the center of the country, where non-farm employment opportunities are abundant, while other crops enjoy better conditions in the North (e.g. fruits) or in the south (e.g. vegetables). We implicitly assume that there is no correlation in the aggregate.

⁹ It should be noted that measurement errors could lead to a spurious effect of the importance of agriculture on income per capita. This is because aggregate village income appears in the numerator of the dependent variable and in the denominator of the explanatory variable. In this case a measurement error could create an artificial negative correlation between the two variables. This could be dealt with by finding suitable instruments for the importance of agriculture. For example, the 1983 importance of agriculture could serve as an instrument in the 1995 regression. This task is left for future research.

¹⁰ Smailes et al. (2002) have shown that rural population density affected several socio-economic outcomes in Australia.

¹¹ McGranahan and Kassel (1997) showed that education is closely associated with rural growth. However, Artz (2003) claimed that education can affect rural well-being positively through the accumulation of human capital and negatively due to selective outmigration.

defined by both agricultural and geographical properties, we also include the distance from Tel Aviv as an explanatory variable. This gives us a partial control for geographic location within regions¹². Institutional characteristics include year of establishment and a set of dummies for affiliations in settlement movements¹³.

The means of the explanatory variables are reported in table 3. In terms of population, the Moshav villages increased in size between 1983 and 1995. This was accompanied by a decrease in household size, an increase in the median age and a decrease in the dependency ratio. The increase in population is likely to come through two channels. First, the rise in housing prices has induced more farmers' children to come to live next to their parents even if they have no interest in farming, up to the full capacity of two households per farm (Kimhi and Nachlieli, 2001). This also explains the decrease in household size and the dependency ratio, because these new households are headed by relatively young people. The second channel is through the new residential neighborhoods that were built in some of the Moshav villages. While it is not clear whether income per capita would go up or down due to the expansion, the importance of agriculture is very likely to decline.

Education has also increased in Moshav villages, and this is due to the new generation of residents. The increase in labor force participation, the fraction of prestigious jobs and the fraction of hired employees could be explained by the influx of non-farming families and also by the decline in the importance of agriculture.

The regional distribution of the Moshav population indicates that most of the population expansion was concentrated in the center of the country, while the population in the far north actually declined. However, the distance to Tel Aviv increased slightly on average, indicating that within regions, population shifted to more remote villages. We observe a small number of new Moshav villages that were established between 1983 and 1995, and this explains the slight changes in the institutional variables.

4. Results

Table 4 provides bivariate correlation coefficients between the dependent variables and the explanatory variables. We first note that economic well-being is significantly correlated with most of the explanatory variables, and almost all of the correlations are consistent in sign across the three measures of well-being. In particular, the importance of agriculture, village population, median age, higher edu-

Table 3 - Means of Explanatory Variables.

Table 5 Means of Explanatory re			
		Mos	shav
Variable	Units	1983	1995
Demographic variables			
Population	People	419.41	488.65
Household size	People	4.05	3.46
Median age	Years	25.20	27.79
Dependency ratio	Ratio	0.99	0.87
High school	Percent	47.48	52.61
Higher education	Percent	28.56	38.74
Academic degree	Percent	9.68	17.49
Labor participation	Percent	63.36	68.96
Prestigious job	Percent	8.52	13.50
Hired employees	Percent	51.91	61.63
Geographic variables			
Golan & East Galilee	Percent	7.86	3.44
West Galilee	Percent	5.68	4.97
Yizre'el & Lower Galilee	Percent	7.07	7.07
East Valleys & Arava	Percent	4.03	4.81
Center	Percent	51.45	56.44
South	Percent	23.91	23.27
Distance to TLV	km	54.41	55.27
<u>Institutional variables</u>			
Year of establishment	Year	1948	1949
Tnu'at Hamoshavim	Percent	62.34	64.21
Hapo'el Hamizrachi	Percent	16.15	14.40
Ha'ichud Hachakla'i	Percent	10.98	11.11
Other	Percent	10.53	10.28
Number of localities	number	406	411

Note: the means are weighted by number of households in each locality.

cation, academic degrees, labor force participation and the fraction of prestigious jobs are all positively correlated with well-being. On the other hand, household size, the dependency ratio, the distance to Tel-Aviv and year of establishment are negatively correlated with well-being. High school education and the fraction of hired employees have mixed correlations but the trend is negative.

Tables 5-7 include the regression results for income percapita, housing density and car ownership, respectively. Four sets of results are provided. The first two are separate regressions using 1983 and 1995 data, respectively. The third is a pooled regression with data from both years but without tracking the identity of each village. The last regression is a panel regression, using the matched observations from the two census years and allowing for village-specific fixed effects. Although the four different regres-

¹² Ehrensaft and Beeman (1992) showed that distance from a metropolitan center accounts for much of the differences between rural communities. Bollman (1999) found that in Canada, communities influenced by metropolitan centers benefited relative to other communities during the 1980s. Kimhi and Menahem (2010) found similar patterns in Israel.

¹³ Historically, the settlement movements were ideologically differentiated, and this may have had long-lasting consequences for well-being (Kimhi, 1998).

	1983				1995		
Variable	Income	Housing	Autos	Income	Housing	Autos	
Importance of agriculture	-0.358**	-0.050**	-0.132**	-0.351**	-0.078**	-0.233*	
Population	0.007**	0.101**	0.023 **	0.047**	0.121**	0.072*	
Household size	-0.154**	-0.639**	-0.255**	-0.244**	-0.651**	-0.173*	
Median age	0.090**	0.663**	0.153**	0.130**	0.592**	0.066*	
Dependency ratio	-0.028**	-0.316**	0.015**	-0.198**	-0.205**	-0.116*	
High school	0.058**	-0.024	-0.067**	-0.384**	-0.303	-0.484	
Higher education	0.189 *	0.362**	0.480**	0.470**	0.417**	0.617*	
Academic degree	0.195**	0.264**	0.357	0.501**	0.384**	0.609*	
Labor participation	0.118**	0.151**	0.248**	0.426**	0.231**	0.431*	
Prestigious job	0.240**	0.272**	0.433**	0.392**	0.335**	0.521*	
Hired employees	-0.042	-0.082**	-0.131**	-0.085**	0.010	-0.078*	
Distance to TLV	-0.080**	-0.284**	-0.299**	-0.107**	-0.305**	-0.172*	
Year of establishment	-0.005**	-0.419**	-0.159 *	-0.048**	-0.356**	0.021*	

sions produce quite different parameter estimates, there are some clear trends which we discuss below.

The importance of agriculture has a statistically signifi-

cant negative effect on income per capita in Moshav villages. It has no significant effect on housing density, and has a significant effect on automobile ownership in the panel regression only. Village population has a negative effect on housing density in 1995 and a positive effect on car ownership. Household size has a negative effect on income per capita and car ownership and a positive effect on housing density. Median age and the dependency ratio have a positive and a negative effect, respectively, on housing density. Higher education has a positive effect on car ownership, and the fraction of academic degrees has a positive effect on all three indicators of wellbeing. Labor force participation has a positive effect on car ownership, while the fraction of prestigious jobs has a positive effect on income per capita. The

fraction of hired employees has a positive effect on all three indicators of well-being.

There are a few significant differences across regions.

Variable	1983		1995		Pooled		Panel	
	Estimate	T-value	Estimate	T-value	Estimate	T-value	Estimate	T-value
Intercept	2.665	3.180**	-0.143	-0.300	0.555	1.520		
Importance of agriculture	-0.268	-5.180**	-0.181	-7.670**	-0.213	-10.580**	-0.404	-8.680**
Population	0.114	1.130	0.011	0.220	-0.022	-0.520	-0.106	-0.550
Household size	0.151	1.340	-0.198	-3.150**	-0.145	-2.740**	0.021	0.230
Median age	-0.004	-0.520	-0.005	-1.180	-0.002	-0.460	0.004	0.640
Dependency ratio	-0.066	-0.920	0.024	0.670	0.035	1.190	-0.017	-0.310
High school	-0.003	-1.480	-0.005	-5.040**	-0.001	-1.160	-0.002	-1.280
Higher education	0.001	0.260	0.002	1.180	0.003	2.120*	-0.001	-0.630
Academic degree	0.015	5.010**	0.004	1.800	0.006	4.620**	-0.001	-0.440
Labor participation	-0.021	-4.490**	0.007	2.830**	-0.002	-1.010	-0.002	-0.660
Prestigious job	0.000	0.050	0.009	4.830**	0.004	3.050**	0.004	1.170
Hired employees	0.012	2.270*	0.003	1.150	0.010	6.240**	0.009	2.030*
Golan & East Galilee	0.004	0.890	-0.003	-1.760	-0.003	-1.800		
West Galilee	-0.112	-0.580	0.087	1.040	0.088	1.220		
Yizre'el & Lower Galilee	0.130	0.840	0.069	0.820	0.038	0.530		
East Valleys & Arava	0.215	1.870	0.015	0.190	0.086	1.390		
South	-0.102	-0.720	0.036	0.510	0.066	1.080		
Distance to TLV	0.142	1.740	0.117	2.370*	0.114	2.800**		
Year of establishment	0.000	0.320	0.001	1.240	0.000	-0.180		
1995 dummy					-0.962	-13.500**	-1.111	-14.060**
R squared (%)	0.583		0.560		0.685		0.512	
F statistic	6.920*	**	19.400*	*	50.140**		10.290*	*
Number of cases	119		410		529		119	

Table 6 -	Regression	Results.	Housing	Density
Table 0 -	Regression	nesuus.	Housing	Densuy.

	198	33	199	95	Pool	ed	Pan	el
Variable	Estimate	T-value	Estimate	T-value	Estimate	T-value	Estimate	T-value
Intercept	24.322	0.860	98.199	5.660**	72.578	5.310**		
Importance of agriculture	2.906	1.660	-0.407	-0.470	0.320	0.430	0.981	0.580
Population	1.982	0.580	-4.561	-2.440*	-1.369	-0.870	- 4.719	-0.680
Household size	-3.157	-0.830	6.350	2.760**	3.973	2.010*	4.689	1.420
Median age	0.862	3.510**	0.801	5.670**	0.817	6.680**	0.585	2.700**
Dependency ratio	-5.156	-2.130*	-13.519	-10.250**	-11.199	-10.260**	-7.554	-3.820**
High school	0.016	0.250	-0.070	-1.940	-0.044	-1.440	0.077	1.220
Higher education	0.130	1.570	0.126	1.770	0.041	0.870	0.086	1.060
Academic degree	0.155	1.560	0.193	2.610**	0.133	2.560*	-0.117	-1.160
Labor participation	0.161	1.020	-0.037	-0.430	-0.032	-0.440	0.263	1.970
Prestigious job	- 0.099	-0.980	-0.051	-0.780	-0.075	-1.410	-0.150	-1.340
Hired employees	0.194	1.120	0.254	2.960**	0.225	3.940**	0.291	1.760
Golan & East Galilee	-0.258	-1.860	-0.058	-0.930	-0.079	-1.420		
West Galilee	7.321	1.130	4.131	1.340	5.250	1.950		
Yizre'el & Lower Galilee	7.745	1.490	4.234	1.370	5.423	2.040*		
East Valleys & Arava	2.194	0.560	5.547	1.990*	5.345	2.320*		
South	3.784	0.790	-3.001	-1.150	-0.255	-0.110		
Distance to TLV	5.384	1.950	-0.468	-0.260	2.106	1.390		
Year of establishment	-0.080	-2.180*	-0.065	-2.720**	-0.068	-3.370**		
1995 dummy					6.923	2.610**	8.030	2.800**
R squared (%)	0.732		0.624		0.640		0.326	
F statistic	13.540	k*	25.330*	*	40.940*	*	4.740*	*
Number of cases	119		410		529		119	

^{*} coefficient significant at 5%; ** coefficient significant at 1%.

Car ownership is higher in villages located in the Golan and Eastern or Western Galilee, while housing density is better in villages located in Yizre'el Valley and Lower Galilee or in the East Valleys and Arava, compared to those located in the center. Distance to Tel Aviv has a positive effect on income per capita¹⁴. Year of establishment has negative effects on housing density and on car ownership, meaning that villages that were established earlier are doing better in terms of these two indicators of well-being. The coefficients of the 1995 dummy imply a statistically significant deterioration of income per capita and improvement in housing density between 1983 and 1995, holding everything else constant. The coefficients of the settlement movement dummies are not shown in the table, because few of them turned out statistically significant.

5. Discussion

Our conclusions regarding the effect of the importance of agriculture on economic well-being in rural Israel are therefore mixed. To the extent that income per capita is a satisfactory measure of rural well-being, households in Moshav villages with higher dependence on agriculture are worse off. They are not worse off, though, in terms of housing density, and the results with regard to automobile ownership are inconclusive.

There is a possible interpretation of these results. While income is determined to a large extent by market forces and pre-determined personal qualifications, housing density and automobile ownership are household decisions. In particular, they are determined by household income. Hence, the equations we estimated are in fact reduced-form equations. One could say that housing density and automobile ownership are not affected directly by the importance of agriculture despite the fact that income per capita is adversely affected by the importance of agriculture. This implies that holding income per capita constant, the importance of agriculture may have a positive effect on the other measures of economic well-being.

¹⁴ The geographical aspect is perhaps worth emphasizing in future research, by analyzing the effects of local labor markets. In addition to the regional dummies and the distance to Tel Aviv, it should be possible to construct measures of the economic activity in the immediate surroundings of the villages, and use these as additional explanatory variables.

Table 7 - Regression Results: Automobile Ownership.

	198	33	199	05	Pool	ed	Pan	
Variable	Estimate	T-value	Estimate	T-value	Estimate	T-value	Estimate	T-value
Intercept	-17.473	-0.790	-53.774	-2.940**	-55.024	-3.920**		
Importance of agriculture	-0.377	-0.280	0.039	0.040	0.457	0.590	-3.569	-2.340**
Population	1.544	0.580	4.898	2.490*	6,696	4.150**	7.151	1.130
Household size	-1.101	-0.370	-8.018	-3.310**	-7.225	-3.560**	-6.543	-2.200**
Median age	0.080	0.420	- 0.119	-0.800	-0.029	-0.230	-0.338	-1.730
Dependency ratio	2.665	1.410	2.294	1.650	1.595	1.420	0.303	0.170
High school	-0.042	-0.840	-0.053	-1.390	-0.008	-0.250	0.035	0.610
Higher education	0.137	2.110*	0.173	2.300*	0.115	2.360*	0.091	1.250
Academic degree	0.291	3.730**	0.310	3.960**	0.320	5.980**	-0.002	-0.020
Labor participation	0.040	0.330	0.192	2.110*	0.204	2.750**	0.349	2.900**
Prestigious job	-0.028	-0.350	0.122	1.780	0.034	0.620	-0.073	-0.730
Hired employees	0.059	0.430	0.367	4.060**	0.158	2.690**	0.315	2.120**
Golan & East Galilee	-0.083	-0.770	0.222	3.400**	0.214	3.740**		
West Galilee	7.293	1.440	4.081	1.260	8.158	2.950**		
Yizre'el & Lower Galilee	4.586	1.130	-4.041	-1.240	-1.131	-0.410		
East Valleys & Arava	0.164	0.050	1.602	0.540	1.046	0.440		
South	-0.526	-0.140	-3.704	-1.340	-1.167	-0.500		
Distance to TLV	0.339	0.160	-0.632	-0.330	-0.943	-0.600		
Year of establishment	-0.055	-1.910	-0.027	-1.050	-0.043	-2.070*		
1995 dummy					0.583	0.210	4.092	1.580
R squared (%)	0.479		0.529		0.525		0.304	
F statistic	4.560*	**	17.100*	*	25.420*	*	4.290*	*
Number of cases	119		410		529		119	

The conclusion is, then, that while income per capita is lower in villages that rely more heavily on agricultural production, households in these villages are compensated by enjoying a better housing density and more automobiles. In the case of housing, this may be due to the lower taxes levied on farm households who build or enlarge their residence. In the case of automobiles, this may be due to the use of automobiles in farm production, meaning that their purchase and maintenance are also tax deductible. Hence, the tax policy serves an important purpose of compensating farm households for the utility loss brought about by the decline of agriculture as a decent source of income. Overall, we conclude that per-capita income is not a perfect measure of well-being in rural areas for comparison with urban areas.

These results have important implications for agricultural policy in particular and rural policy in general. Provided that we are not going to experience a surge in farm incomes over the long run, then if governments want to keep farmers in business, for the benefit of the entire population, they have to reward them for the public goods they provide indirectly. Still, under the reasonable assumption that farm numbers will continue to decline, policies should be direc-

ted at creating alternative employment opportunities in rural areas that will smooth the occupational migration out of farming and prevent rural poverty.

Acknowledgements

This research was supported by a grant from The Chief Scientist of the Ministry of Agriculture and Rural Development in Israel and by the Center for Agricultural Economic Research. Ofir Hoyman provided excellent research assistance. We thank Elana Dror and Michal Eliav from the Central Bureau of Statistics for providing the data.

References

Ahituv, A., Kimhi, A., 2006. "Simultaneous Estimation of Work Choices and the Level of Farm Activity Using Panel Data." *European Review of Agricultural Economics* 33, 49-71.

Alasia, A., Weersink, A., Bollman, R.D., Cranfield, J., 2009. "Off-Farm Labour Decision of Canadian Farm Operators: Urbanization Effects and Rural Labour Market Linkages. *Journal of Rural Studies* 25(1): 12-24.

Artz, G., 2003. "Rural Area Brain Drain: Is It a Reality?" *Choices*, December, 11-15.

Bollman, R.D., 1999. Factors Associated with Local Economic Growth. Rural and Small Canada Analysis Bulletin, Vol. 1, No. 6.

Chaplina, H., Davidovaa, S., Gorton, M., 2004. "Agricultural Adjustment and the Diversification of Farm Households and Corporate Farms in Central Europe." *Journal of Rural Studies* 20, 61-77.

Ehrensaft, P., Beeman, J., 1992. "Distance and Diversity in Nonmetropolitan Economies." In Ray D. Bollman, ed., Rural and Small Town Canada, Thompson Educational Publishing, Toronto, p. 195-224.

Freshwater, D., 2000. *Three Papers on Rural Development*. TVA Rural Studies Staff Paper 00-14, University of Kentucky.

Goodwin, B.K., Mishra, A.K., Kimhi, A., 2007. *House-hold Time Allocation and Endogenous Farm Structure: Implications for the Design of Agricultural Policies*. Discussion Paper No. 11.07, Rehovot: The Center for Agricultural Economic Research.

Haruvi, N., Kislev, Y., 1984. "Cooperation in the Moshav." *Journal of Comparative Economics* 8, 54-73.

Kimhi, A, 1998. "Institutional Environment, Ideological Commitment, and Farmers' Time Allocation: the Case of Israeli Moshavim." *Economic Development and Cultural Change* 47, 27-44.

Kimhi, A., 2000. "Is Part-Time Farming Really a Step in the Way Out of Agriculture?" *American Journal of Agricultural Economics* 82, 38-48.

Kimhi, A., 2004. *Economic Well-Being in Rural Communities in Israel*. Discussion Paper No. 2.04, Rehovot: The Center for Agricultural Economic Research.

Kimhi, A., Bollman, R., 1999. "Family Farm Dynamics in Canada and Israel: The Case of Farm Exits." *Agricultural Economics* 21, 69-79.

Kimhi, A., Menahem, S., 2010. *Does Rural Household Income Depend on Neighboring Urban Centers? Evidence from Israel*. Discussion Paper No. 6.10, Rehovot: The Center for Agricultural Economic Research.

Kimhi, A., Nachlieli, N., 2001. "Intergenerational Succession in Israeli Family Farms." *Journal of Agricultural Economics* 52, 42-58.

Kimhi, A., Rekah, H., 2007. *Are Changes in Farm Size and Labor Allocation Structurally Related? Dynamic Panel Evidence from Israel*. Discussion Paper No. 17.07, Rehovot: The Center for Agricultural Economic Research.

Kislev, Y., 1992. "Family Farms, Cooperatives and Collectives." In *Sustainable Agricultural Development: The Role of International Cooperation*, Eds. G.H. Peters and B.F. Stanton, Aldershot, England: Dartmouth, p. 520-530.

Kisley, Y., 1993. "Experience with Collective Action and

Cooperation in Agriculture in Israel." In *Agricultural Cooperatives in Transition*, Eds. Csaba Csaki and Yoav Kislev, Boulder, Colorado: Westview Press, p. 269-290.

Kislev, Y., Lerman, Z., Zusman, P., 1991. "Recent Experience with Cooperative Farm Credit in Israel." *Economic Development and Cultural Change* 39, 773-789.

Kislev, Y., Vaksin, E., 2003. *Statistical Atlas of Agriculture in Israel* – 2003 *Update*. Discussion Paper No. 12.03, Rehovot: The Center for Agricultural Economic Research.

McGranahan, D.A., Kassel, K., 1997. "Education and Regional Employment in the 1980s: Comparisons among OECD Member Countries." In R.D. Bollman and J.M. Bryden (eds.), *Rural Employment: An International Perspective*, New York: CAB International.

Meert, H., van Huylenbroeck, G., Vernimmen, T., Bourgeois, M., van Hecke, E., 2005. "Farm Household Survival Strategies and Diversification on Marginal Farms." *Journal of Rural Studies* 21, 81-97.

Mishra, A.K., Erickson, K.W., Harris, J.M., Hallahan, C.B., Uematsu, H., 2010. *Determinants of Farm Household Income Diversification in the United States: Evidence from Farm-Level Data*. Paper presented at the Agricultural and Applied Economics Association Annual Meeting, Denver, Colorado.

Mitchell, C.J.A., 2004. "Making Sense of Counterurbanization." *Journal of Rural Studies* 20, 15-34.

Randall, A., 2010, "Multifunctional Agriculture: An Engine of Regional Economic Growth." *Abstract: Applied Studies in Agribusiness and Commerce* 4, 7-15.

Renting, H., Rossing, W.A.H., Groot, J.C.J., van der Ploeg, J.D., Laurent, C., Perraud, D., Stobbelaar D.J., van Ittersum, M.K., 2009. "Exploring Multifunctional Agriculture. A Review of Conceptual Approaches and Prospects for an Integrative Transitional Framework." *Journal of Environmental Management* 90, S112-S123.

Rothwell, N., Bollman, R.D., Tremblay, J., Marshall, J., 2002. "Migration to and from Rural and Small Town Canada." *Rural and Small Town Canada Analysis Bulletin* Vol. 3, No. 6.

Smailes, P.J., Argent, N., Griffin, T.L.C., 2002. "Rural Population Density: Its Impact on Social and Demographic Aspects of Rural Communities." *Journal of Rural Studies* 18, 385-404.

Sofer, M., 2001. "Pluriactivity in the Moshav: Family Farming in Israel." *Journal of Rural Studies* 17, 363-375.

van Leeuwen, E., Dekkers, J., Piet, R., 2008. *The Development of a Static Farm-Level Spatial Microsimulation Model to Analyse On- And Off-Farm Activities of Dutch Farmers*. Paper presented at the 3rd Israeli - Dutch Regional Science Workshop, The Hebrew University, Jerusalem, Israel.