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Abstract
It is a stylized fact that the Italian farmers do not benefit of casual structure along value chain. Conversely, 
retailers could advantage of any positive shock price changes occurred in the wholesale supply chain. 
We investigate the presence of shock price vertical contagion in the Italian hog market, describing the 
dependence structure along the supply chain and assessing the degree of extreme value dependence. The 
approach followed is non linear and copula-based, applied on weekly data of hog price changes referred 
to Italian farm, wholesale and retail branch chain, over the period 1994-2015. In particular, the objective 
of the analysis consists in to obtain a measure of the relationship between extreme events of returns, 
estimating the tail dependence coefficients of copula functions involved in the analysis. The empirical 
findings highlight the asymmetry of price transmission along the hog Italian supply chain, more relevant 
for wholesale–retail pair.

Keywords: Price transmission, Copula model, Value chain, Volatility, Tail dependence, GARCH model.

1. Introduction

Agro-food price asymmetry contagion, un-
der extreme market conditions, is an important 
yardstick for measuring market inefficiencies. 
On one hand, this is of relevance from mi-
cro-perspective as large and unexpected price 
movements strongly affect agricultural house-
holds’ welfare. On the other hand, market dis-
tortions are often cited as a ground for govern-
ment intervention. In this sense, the problem 

of market volatility is also high on the agenda 
from macro-perspective.

In well-functioning markets, price shocks are 
equally transmitted at all market levels, from re-
tailers to producers passing along the wholesale 
level; in trade terms, would be crucial to evalu-
ate the dependence structure among global food 
grain markets and South Eastern Mediterranean 
Countries (SEMC). In this context, it would be 
relevant to know dependence structure because 
it could be a risk management tool for specula-
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tors and a better forecasting tool for implement 
public support to risk management and food se-
curity. The efficiency of a food supply chain is, 
therefore, crucial to maintain a sustainable dis-
tribution of value added and of benefits among 
the stakeholders (Emmanouilides and Fousekis, 
2014). 

Volatility of agricultural commodity interna-
tional price has a greater impact on developing 
countries and on the poorer, because it creates 
major import bill uncertainty.

Currently 16% of the world population use the 
opportunities of international trade to cover their 
demand for agricultural products. 

In the SEMC, food security is strongly inter-
related with several key economic and political 
issues. Many of these countries are becoming 
increasingly import-dependent, particularly on 
cereals, which are the essential raw material for 
human and animal food and feed. The SEMC 
are responsible for 1/3 of world cereals imports, 
whereas they account for only 5% of the world 
population.

The exposure of SEMC countries to world 
food price volatility is firstly linked to their high 
dependence on the external market. The World 
Bank (2012) has calculated the ratios of net im-
ports to domestic consumption, as indicative of 
the dependency on foreign imports to satisfy 
domestic food demand . The results show that 
dependence on food imports in general is high 
across SEMC countries. 

In this scenario, several researches have been 
carried out in order to consider the possible price 
asymmetry dependence structure, conditioned to 
direction or magnitude of changes, such as Boyd 
and Brorsen (1988), which tested, in both cas-
es, for asymmetry in price adjustments in the 
pork marketing channel, verifying that whole-
saler price changes are affected, symmetrically, 
by price changes occurred at farmer level, and 
Goodwin and Harper (2000), that revealed im-
portant asymmetries in the U.S. pork sector with 
a threshold co-integration model, and Ben-Kaa-
bia and Gil (2007) that analyzed a three-regime 
Threshold Autoregressive Model to verify price 
asymmetry transmission in Spanish lamb sec-
tor. Other models are based on non-stationary 
feature of time series data, by means of co-in-

tegration techniques, see e.g. the regime-switch-
ing model of Serra and Goodwin (2003) or the 
asymmetric long run price linkage of Gervais 
(2011) and price transmission elasticity of Ab-
bassi et al. (2012).

Anyway, all these models do not take into ac-
count, simultaneously, some aspects, such as to 
model separately the marginal and joint depen-
dence structure of variables in a non-linear and 
flexible way, to measure the interdependence in 
presence of extreme market events, in terms of 
tail dependence measures, and to consider the 
conditional volatility of time series. 

More recently works study the asymmetry in 
the world of copulas. The copula tool is quite 
popular in finance and risk management area 
since the late 1990s (see, for instance, Cherubini 
et al., 2004; Patton, 2006), but only recently are 
applied in agro-food economics. 

Copulas offer an alternative and flexible way 
to analyze price co-movements, particularly 
during extreme market events. A copula function 
allows to specify, separately, the joint depen-
dence structure from the marginal behavior of 
time series, enabling a conditional dependence 
evaluation between extreme events by means of 
tail dependence coefficients, as measure of the 
relationship in the tails of the joint distribution. 
In addition, in order to consider the conditional 
volatility of each time series, a copula-GARCH 
approach can be used, allowing to describe 
time-varying variance of univariate returns.

The latest agro-food economics literature is 
rich enough of empirical contributes aimed to 
explore market integration in the copula con-
text. Reboredo (2012) examined co-movement 
between international food and oil prices; Serra 
and Gill (2012) analyzed the relationship among 
biodiesel, diesel and crude oil prices in Spain; 
Emmanouilides and Fousekis (2014) investi-
gated vertical price dependence in the U.S. beef 
supply chain, verifying the presence of asym-
metry influences in the market, especially for 
the pair wholesale–retail which is only of pos-
itive type; finally, Panagiotou and Stavrakoudis 
(2015), studying the price dependence structure 
between different pork cuts in the U.S. industry 
at retail level, did not find evidence of asym-
metry in the price co-movements. In this per-
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spective, analyzing the U.S. hog/pork market, 
Qiu and Goodwin (2013) explored asymmetric 
vertical transmission of price changes along the 
supply chain under extreme market conditions, 
by means of tail dependence measures based 
on a copula-GARCH model, applied also in a 
time-varying framework. Their results show the 
evidence of symmetric shock price change trans-
mission along farm – wholesale and wholesale 
– retail pairwise; conversely, the farm– retail 
return pair is characterized by an asymmetric 
relationship in the tail of the joint distribution, 
higher for the upper than for the lower case. This 
last feature means that positive extreme returns 
in one marketing channel, e.g. for the farmer, are 
connected to positive extreme returns in the oth-
er one, for the retailer, and vice versa.

Then, in order to measure the asymmetry of 
shock price transmission along the Italian hog 
supply chain, starting from the idea of Qiu and 
Goodwin (2013) and defining the joint co-move-
ment of farm, wholesale and retail price chang-
es, a copula-based approach has been applied, 
which enables to estimate the dependence struc-
ture in presence of extreme values assumed by 
returns.

Moreover, since 2008 the European Com-
mission has stressed that the experience of the 
2007/2008 price peaks has shown that magni-
tude and asymmetry recorded in the price adjust-
ment process represent serious concerns about 
the functioning of the European agro-food sup-
ply (EC, 2008). The same report underlines how 
the empirical evidence in this regard is, howev-
er, contrasting, highlighting even very different 
conclusions depending on the markets and the 
countries investigated. Same conclusions for 
the specific sector of the hog supply chain, for 
which the Commission found, however, some 
significant trends, such as the slowness with 
which in many countries price changes move 
from upstream to downstream, symptomatic of 
the fact that only a limited part of the changes in 
consumer prices is generated by changes record-
ed in the primary phase of the supply chain, and 
the presence of imperfections in the competitive 
structure of the supply chains. 

In Italy the question is of particular impor-
tance for the value generated by the supply 

chain. One of the most advocated options is to 
promote, within the framework of the discipline 
of inter-professional organization, long-term 
contracts shared by an important part of the op-
erators in the supply chain and based on index-
ation mechanisms connected, at least in part, to 
feed prices, which represents about 40% of the 
average costs borne by Italian pig producers.

In this context, the aim of this work is three-
fold. First of all, to the best of our knowledge, 
we contribute to the literature as the primary at-
tempt in agro-food Italian market in the copula 
tool framework, then, we describe the relation-
ship among extreme values along Italian hog 
supply chain also in terms of trivariate copula 
tail dependence measures, both in the upper and 
lower case and, finally, we define the policy im-
plications of the analysis results.

The paper is structured as follows: a short 
theoretical backgrounds are given in Section 2, 
focusing, in particular, on statistical properties 
of copula functions, of tail dependence coeffi-
cients and of non-parametric tail dependence 
measures; more details are provided in Appen-
dix 1. The Section 3 provides empirical results 
of the analysis of joint tail co-movements along 
the Italian hog supply chain. Some concluding 
remarks are reported in Section 4.

2. Theoretical Framework

2.1.  Copula function properties

A copula function is an n-variate distribution 
function defined on the unit cube [0, 1]n, with 
uniformly distributed margins, with the follow-
ing properties:

- the range of copula C(u1, . . . , un) is the unit 
interval [0, 1];

- C(u1, . . . , un) = 0 if any ui = 0 for i = 1, . . . , n;
- C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ϵ [0, 1];

The copula-based pillar is the Sklar’s theorem 
(Sklar, 1959), which justifies the role of copula 
as dependence function, shows that, for contin-
uous multivariate distributions, the univariate 
margins can be separated from the dependence 
structure which is completely captured by a cop-
ula function.
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Theorem 1: Let H(·) be a joint distribution 
function of continuous random variables xi (for 
i = 1,..., n) with marginal distribution functions 
Fi(·), then, there exists a copula function C, such 
that:

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

where Fi(·)=P(Xi ≤ xi)=ui (for i = 1, . . . , n) 
and every ui = (u1, . . . , un)

T is uniform in [0, 1]n. 
If Fi(·) is continuous, then the copula C is 

unique; otherwise, C is uniquely determined on 
[RanF1(x1), . . . ,RanFn(xn)]. Conversely, if C is 
a copula and Fi(·) is a distribution function, then 
the function H defined above is a joint distribu-
tion function with margin Fi(·).

3. Empirical analysis

3.1.  Data and modeling procedure

We have analysed the price co-movements in 
the hog Italian market, verifying the dependence 
structure of hog weekly data prices, from Jan-
uary 1994 to December 2014, concerning the 
farm, wholesale and retail distribution channels.

The analysis of prices reveals that a crisis in 
the hog market begun in the 1998 continued 
throughout the 1999, in all three chains. Besides, 
a more recent shock in the farm market occurred 
in the 2008, as shown in the Figure 1, as result 
of high levels of raw material costs employed in 
the breeding and of energy resources. 

In all three series is not present any trend, 
as showed by the results of Augmented Dick-
ey-Fuller (ADF) test (Dickey and Fuller, 1979) 
applied to farm, wholesale and retail price time 
series.

Moreover, we intend to study the supply chain 
co-movements of weekly returns. Therefore, in 
the first, we have obtained log-returns, calculat-
ing the natural logarithm of ratios between the 
price at time t and the same price at time t-1, 
for each branch chain. Then, an ARMA-GARCH 
model has been applied to taking into account 
the presence of a conditional serial dependence 
of returns, both in mean and in variance frame-
work. After estimating marginal behaviour 
of each time series of returns, we investigated 
the presence of a conditional cross-section de-
pendence (as suggested in Qui and Goodwin, 

Figure 1 - Weekly Hog Prices: Jan 1994-Dec 2014.

NEW_MEDIT_01-2019.indd   6 22/03/19   07:55



NEW MEDIT N. 1/2019

7

2013), applying a cross-equation model to the 
standardized residual pair-wise obtained from 
the estimated ARMA-GARCH structure. After-
wards, we transform the standardized residuals 
of cross-equation model into uniform margins, 
input argument of copula functions. Concluding, 
a copula function has been employed to join the 
uniform margins into a multivariate distribu-
tion. This method, called Inference For Margins 
(IFM) method, allows to specify separately, in a 
simple (instead of the full maximum likelihood, 
more computationally complex) and flexible 
way (also in non linear and asymmetric frame-
work), the dependence structure of returns, by 
means of the maximum likelihood estimation 
method for the parameters involved at each step 
of the procedure. 

Finally, in order to measure the conditional 
dependence between extreme events occurred 
along the pork supply chain, tail dependence co-
efficients are estimated. 

We derived, besides, a trivariate copula func-
tion in order to estimate the upper and lower tail 
dependence coefficients among the three branch 
chains. Starting from the standardize skew-t 
residuals of an ARMA-GARCH model before 
and, then, on the residuals of the conditional 
cross-equation model (VAR) with skew-t inno-
vations, we applied the uniform transformation 
to obtain the trivariate copula margins. Then, a 
copula model is selected from the main fami-
lies, such as Elliptical and Archimedean. In this 
case, the method could consist in a non-linear 
VAR (Vector AutoRegressive) model (see, e.g. 
Bianchi et al., 2010) with three variables, ap-
plying a copula function on VAR skew-elliptical 
distributed residuals. Tail dependence coeffi-
cients for the multivariate t-copula are obtained 
according to Joe (2014).

3.2.  Results

The analysis of branch chain returns high-
lights a more high volatility of wholesale returns 
(see Table 1), while the farm and retail returns 
are quite stable over the time, reporting very low 
fluctuations in the considered period. 

In addition, calculating the non parametric 
tail dependence measures at same time lag t 

(Table 2), we note a significant upper tail de-
pendence between farm and retail returns and 
a symmetric non-zero tail dependence between 
farm and wholesale price changes. This implies 
that, in the same week, positive extreme values 
of farm prices changes are linked to positive 
extreme values of retail returns, and vice versa; 
but negative shocks of a variable does not affect 
the other one. For the pair farm-wholesale, we 
observe a significant joint tail co-movement, 
both in the upper and lower case.

Table 2 - Non parametric tail dependence coefficients 
at time t (k=2).

Conditioning variable
Lower tail dep Farm Wholesale Retail
Farm - 0.071 0.000
Wholesale 0.125 - 0.229
Retail 0.000 0.286 -
Upper tail dep Farm Wholesale Retail
Farm - 0.330 0.067
Wholesale 0.230 - 0.133
Retail 0.051 0.148 -

Conversely, the non parametric tail de-
pendence measures, if calculated at different 
time lag, between t and t-1 (or two consecu-
tive weeks) on each asset pair-wise (Table 3), 
exhibit the absence of tail dependence, in the 
lower case, between retail/wholesale and farm 
price changes, as conditioning variable. This 
could mean an absence of effects of farm ex-
treme negative returns over retail/wholesale 
price changes at different lags. If farm chain 
has a lower return in a week, other prices do 
not change the next week. In the upper case, 

Table 1 - Summary statistics of farm, wholesale and 
retail returns. 

Return
Descriptive
statistics Farm Wholesale Retail

Mean 0,0003 0,0005 0,0001
St.deviation 0,0268 0,0440 0,0157
Skewness 0,6222 0,1533 -0,0266
Kurtosis 1,3959 0,7776 1,2074
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the impact is the same. Then, positive extreme 
events occurred in one week for farm, do not 
impact on the other variables in the following 
week. The impulse response function, typical 
of Vector Autoregressive models, could show 
this asymmetrical behaviour.

On the other side, the non parametric tail de-
pendence coefficients displayed between retail 
and wholesale is symmetrical in both quadrant of 
the joint distribution, justifying the application 
of a symmetrical tail dependence copula, like the 
Student’s- t copula function. In particular, the 
non parametric tail dependence values suggest 
that the extreme returns at farm level do not af-
fect extreme wholesale and retail price changes, 
if considered at different period of observation, 
and this future could suggest the use of a null 
tail dependence copula, like the Frank copula. 
But the values of non parametric tail dependence 
coefficients calculated for the same week (t) for 
each return pair lead to apply an upper tail de-
pendence copula, e.g. the Gumbel copula. 

For this reason, we have analysed all well-
known copula functions, which belong to Ellip-
tical and Archimedean families, characterize by 
all tail dependence structures.

Table 4 - ARMA-GARCH and of Cross-equation effects models.

Table 3 - Non parametric tail dependence coefficients 
between time t and t-1 (k=2).

Conditioning variable
Lower tail dep Farm Wholesale Retail
Farm - 0.107 0.080
Wholesale 0.000 - 0.029
Retail 0.000 0.180 -
Upper tail dep Farm Wholesale Retail
Farm - 0.190 0.130
Wholesale 0.100 - 0.060
Retail 0.100 0.150 -
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Table 4 are presents the parameter values 
obtained applying the ARMA-GARCH mod-
el, with innovations skew-t distributed, to the 
three univariate returns and by the cross-equa-
tion effect model employed on each return pair. 
The significant lag order is 1 for wholesale/re-
tail with respect to farm price changes (at t-1, 
the previous week) and for farm/retail with re-
spect to wholesale returns (at t-1); on the con-
trary, farm/wholesale – retail pair-wise do not 
show any significant lag order; in this last case, 
there is not evidence of relationship over the 
time among retail and the remaining two mar-
ket chains.

Below, Table 5 reports the fitting values of 
some main copulas involved in the analysis. We 
have estimated all possible copula pairs, choos-
ing the copula with the best fit to the data, ac-
cording to the minimum value assumed by Akai-
ke Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). 

The best fit copula model for the first pair of 
assets, denoted as u1 and u2, respectively farm 
and wholesale returns, is the Frank copula, that 
implies a null tail dependence, both for the upper 
and lower coefficients; this means that extreme 
values of a variable have no influence on the oth-
er ones. Therefore, the upper tail dependence, 
exhibited between farm and wholesale price 
changes at the same week, becomes not signif-
icant when calculated after using conditional 
mean and variance model for returns. As a mat-
ter of fact, the Gumbel copula exhibits the best 
fit to the data when the IFM method is applied 
in absence of a conditional model for the price 
changes, such as the ARMA-GARCH model 
and the conditional serial dependence equations. 

In addition, not considering the cross-equation 
effects, the copulas are identical to the copulas 
obtained taking into account the cross-section 
dependence between variables. This means that 
only the univariate conditional dependence in 
mean and variance has really influence on de-
pendence structure of returns.

Conversely, the copula that better represents 
the dependence structure between wholesale 
and retail price changes is the Student’s-t copu-
la, which is characterized by symmetric non-null 
tail dependence coefficients (lL = lU = 0.065). 
This suggests a weak relationship in the tail of 
joint distribution, such that positive (negative) 
shock for wholesale (retail) returns are followed 
by positive (negative) shock for retail (whole-
sale) returns at the same time. 

Also for the last return pair, farm and retail, 
the tail dependence coefficient is null, because 
the choice of copula lies on two copulas (AIC 
value suggests the selection of Joe-Frank copula, 
while the BIC value indicates the Frank copula, 
both characterized by null tail dependence coef-
ficients). The symmetric extreme price changes 
co-movements are annulled by the conditional 
structure of returns, in the univariate and bivar-
iate framework. This feature leads to conclude 
that joint co-movements under extreme market 
conditions are weak or null.

Further, we want to verify the presence of a 
conditional dependence in the tails of the trivar-
iate joint distribution, in order to assess the de-
gree of this relationship considering the whole 
dependence structure of the pork supply chain. 
To this end, we estimate some copulas as re-
ported in Table 7, according to the procedure 
described in Section 3.1. 

Table 5 - LogLikelihood (LogL), AIC and BIC of some main copulas exploited in the analysis.

We denote with u1=uniform margin for farm returns, u2=uniform margin for wholesale returns, u3= uniform 
margin for retail returns.

NEW_MEDIT_01-2019.indd   9 22/03/19   07:55



NEW MEDIT N. 1/2019

10

Table 7 - LogLikelihood (LogL), AIC and BIC of some 
main trivariate copulas.

Trivariate copula LogL AIC BIC
Student’s-t 250,70 -495,40 -480,41
Gaussian 242,50 -481,00 -471,00
Clayton 160,10 -318,20 -313,20
Gumbel 168,10 -334,20 -329,20
Frank 197,10 -392,20 -387,20
Joe 115,80 -229,60 -224,60

The results show the best fit of the t-Copu-
la with symmetrical, not null, tail dependence. 
Tail dependence coefficients reported at the end 
of Table 8, measure the relationship between 
extreme values at the same lag t. As shown in 
Table 8, the tail dependence coefficients are 
quite low, underlying the same conclusions 
pointed out in the the bivariate case and by 
the non parametric tail dependence, higher for 
wholesale-retail pair and close to zero for those 
remaining.

This price adjustment asymmetry in favour of 
retail-wholesale channels reflects the weakness 
of the producer that fails to adjust prices un-

der positive extreme market conditions. In the 
same way, in case of extreme negative condi-
tions at farm level, retail/wholesale prices will 
not reproduce the same remarkable reduction. 

4. Conclusion

It is important to distinguish between analy-
ses of evolution of margins over time and price 
transmission as these topics are closely related 
but are not identical. Conclusions about price 
transmission that are drawn from the evolution 

Table 6 - Estimated parameters of the selected bivariate copulas and tail dependence 
coefficients.

Table 8 - Estimated parameters of the selected tri-
variate Student’s-t copula and tail dependence coef-
ficients. 

Pair Parameter Estimate St. error
Farm-Wholesale ρ12 0.4385 0.0238
Farm-Retail ρ23 0.2396 0.0287
Wholesale-Retail ρ13 0.4634 0.0231
- ν 16.0153 4.5617
Farm-Wholesale λL=λU 0.0196
Farm-Retail λL=λU 0.0049
Wholesale-Retail λL=λU 0.0230

NEW_MEDIT_01-2019.indd   10 22/03/19   07:55



NEW MEDIT N. 1/2019

11

of marketing margins over time, but that do 
not incorporate other information such as the 
changes in the costs of other inputs, may be 
misleading.

This paper focused to an analysis of vertical 
price transmission.

The adjustment to price shocks along the 
chain from producer to wholesale and to retail 
levels, and vice versa, is an important charac-
teristic of the functioning of markets. As such, 
the process of price transmission through the 
supply chain has long attracted the attention of 
agricultural economists, as well as policy mak-
ers. Recently, the subject of price transmission 
has been increasingly linked to the discus-
sion about benefits from agricultural reform 
e.g. Common Agricultural Policy post 2013. 
That is, a common concern of policy makers 
relates to the assertion that, due to imperfect 
price transmission (perceived to be caused by 
market power and oligopolistic behavior), a 
price reduction at the farm level is only slow-
ly, and possibly not fully, transmitted through 
the supply chain. In contrast, price increases at 
the farm level are thought to be passed more 
quickly on to the final consumer. 

An implication of this asymmetry in price 
transmission, if it exists, is that an analysis of 
trade liberalization likely over-estimates the 
benefits to consumers in countries that have 
gone through policy reform, because the reduc-
tion in farm prices might not be immediately or 
fully transmitted to final consumers.

As a result, there would be smaller positive 
effects on consumer welfare and a possible in-
crease in rents for the firms in the downstream 
sector. Thus, it is important to understand the 
processes related to pass-though of price chang-
es as price transmission assumptions along the 
supply chain play an important role in determin-
ing the size and distribution of welfare effects of 
trade policy reform.

In our analysis we estimated the tail co-move-
ments in the joint distribution along hog supply 
chain in Italy, following the approach proposed 
in Qiu and Goodwin, 2013. 

It turned out that tail price co-movement 
for farm-wholesale pair is null and it is well 

described with a Frank copula, characterized 
by zero tail dependence, such as for the pair 
farm-retail, whose dependence structure is 
defined by a Joe Frank copula; conversely, 
the relationship among wholesale-retail price 
changes is symmetrical and rather weak, but 
not null, and it is represented by a Student’s-t 
copula, with identical non zero tail dependence 
coefficients.

These results underline an asymmetrical 
shock price vertical contagion, showing a bet-
ter price adjustments along the wholesale–re-
tail chain.

This conclusion emphasized what we above 
introduced on the relevance to catch and pos-
sibly to foresee the price transmission move-
ment along value chain and/or among different 
countries.

The value chain in the hog supply chain is ef-
fectively integrated and the policy decisions at 
one point will cause ripple effect on the other 
linkages. Hence, the policies should take into 
account the effect of impact on the entire value 
chain as to enable the hog producers capture the 
benefits of value addition. 

Moreover, this new methodological approach 
seems very promising to analyze price trans-
mission in agricultural commodity trade that, 
for SEMC would represents a big challenges to 
tackle food security.
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Appendix 1

Tail dependence for copulas

Tail dependence is a measure of concordance between less probable values of variables. This 
concordance tends to concentrate on the lower and upper tails of the joint distribution.

In a bivariate context, let Fi be the marginal distribution function of a random variable Xi (i=1,2) 
and let u be a threshold value; then the lower tail dependence coefficient, lL , is defined as
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22112211

1–
22

1–
11

1–
22

1–
1121

≤≤
≤≤≤≤

+≤≤=

=+=−−  

 

, X1 and X2 are asymptotically dependent on the upper tail; if 

 
 

 

Appendix 1 
 

Tail dependence for copulas 

Tail dependence is a measure of concordance between less probable values of variables. This concordance tends to 

concentrate on the lower and upper tails of the joint distribution. 

In a bivariate context, let Fi be the marginal distribution function of a random variable Xi (i=1,2) and let u be a 

threshold value; then the lower tail dependence coefficient, λL , is defined as 

 

{ })u(F   X|)u(F    X P 1–
11

1–
22

0u
limL ≤≤
→ +

=λ  

and, hence 

 

{ } { }
{ } .

u
)u,u(C

)u(F   XP
)u(F   X),u(F   XP)u(F   X)u(F   XP 1–

11

1–
22

1–
111–

11
1–

22 ==
≤

≤≤≤≤  

 

Then, an alternative definition, in terms of copula function, is 

 

.
u
)u,u(C

lim
0u

L
⎭
⎬
⎫

⎩
⎨
⎧=

+→
λ  

 

In a similar way, the upper tail dependence is given by, 

 

{ }.)u(FX|)u(FX P 1–
11

1–
22

1u
U lim

–
>>=

→
λ  

For Uλ ]1,0(∈ , X1 and X2 are asymptotically dependent on the upper tail; if Uλ  is null, X1 and X2 are asymptotically 

independent. 

Hence, 

{ } { } { } { }
{ } .

)u(F   XP–1
)u(F   X),u(F   XP)u(F   XP–)u(F   XP–1)u(FX)u(FXP 1–

11

1–
22

1–
11

1–
22

1–
111–

11
1–

2 ≤
≤≤≤≤ +

=>>  

 

Then, it is possible to recur to an alternative and equivalent definition, for continuous random variables, from which it is 

clear that the concept of tail dependence is indeed a copula property (Joe, 1997) 

.
u–1

)u,u(Cu2–1
u–1

)u1,u1(Ĉ
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It is simple to show that Ĉ is strictly related to the copula function through the following relationship
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Non parametric tail dependence measures 

In order to select an adequate copula function able to capture accurately the dependence structure showed by co-

movements of extreme return pair-wise, can be useful to estimate the empirical tail dependence by mean of non-

parametric method.  

The non-parametric bivariate coefficient of lower tail dependence, λL
NP, can be obtained as (De Luca and Rivieccio, 

2009) 

 

λL
NP(k) = P(X2 ≤ x2

*|X1 ≤ x1
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or conversely, where xi
* is assumed to be µi − kσi	. This statistic depends on k. 

The concept of bivariate upper tail dependence is defined in a similar way as 
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